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Recently Noh, Foug_res and Mandel (NFM) [1] have improved the operational ap-

proach to the quantum phase problem substantially and measured the phase dispersion

of coherent light down to very small mean photon numbers of the order of 10 -2 . This has

prompted many other investigations and clarified some important questions in relation

to what is actually measured. Although their treatment is rather general, we confine

ourselves here to the case of a strong local oscillator (LO) and reproduce their mea-

surement scheme in Fig. 1. Surprisingly enough, this simultaneous measurement of the

sine and the cosine of the phase difference is completely equivalent to an old proposal

to measure the phase after strong linear amplification [2] realized experimentally by the

Welling group [3]. The reason for this rests on the fact, that in both cases the results are

determined by tile Q function of the signal. This was shown for amplification in [4] and

for the measurement after beam splitting by Lai and Haus [5] and also in [6, 7, 8]. The

measured phase dispersion is given by

(_5_) '2 = 1 - _( eI¢ )) 2 .

1 E,,"°__o , ,, ,2 (1)
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where the double brackets mean a classical average over the radius integrated Q function

of the signal and the b,1, are defined by

b,', = P(n + 1/2 + 1) (2)
V/nl(n + 1)!

These coefficients are all smMler than one and broaden therefore the pha.se distribution

of the pure state I_/)>
OO

1¢>= > • (3)
,_=0

In showil_ that the b,1, result from the calculation of the dispersion with the help of the

NFM operators we found tile expansion [8]

1 1 5
1.1 1 + + +. (4)
% 8(n + 1) 128(n + 1) 2 8. 128(n + 1) 3

6 m _

that evidently proves the above mentioned property b,l, < 1 and lim,,_.oo b,1, = 1. This

expansion converges excellently and is very useful because eq. (1) reduces to the Pegg-

Barnett (PB) dispersion [9] by 1)utting all b,_, equal to one, the zeroth approximation of

eq. (4).

Now, very smM1 phase fluctuations suppose great photon number fluctuations and the

last can change the interference signal. Of such kind is the situation for states near to the

so-called phase optimized states (POS) [10,11] which are characterized by the relation

[11]
1 • 89

(_;_)_s - (N + 1) 2, N >> 1, (5)
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Fig. 1 Outline of thc experimental scheme used by Noh, Foug_res and Mandcl where the sine

and the cosine of the phase difference are measured simultaneously. BSi are identical

50//50 beam splitters aud Dj arc photodetectors. Input 2 is the local oscillator.

where N is the mean photon number. Note that coherent states lead to

1

(6V°)_B - 4N' N >> 1. (6)

For clarity the subscripts PB indicate that eqs. (5) and (6) are Pegg-Barnett dispersions

i. e., they are calculated by replacing the classical average in eq. (1) by the quantum

ensemble average < e i_ > with the Hermitian phase operator _ [9].

The question is now how to determine such small dispersions from measurements

in the operational approach, i. e., by measuring via the radius integrated Q function

(eqs. (1), (2) and (4)). The answer is that with the hell) of the expansion (4), some

limitations and an additional measurement of the photon distribution in the scheme of

Fig. 1 it is possible to infer the PB dispersion of states with a (&p)'_ comparable to

the value of eq. (5). Note that the measurenmnt of eq. (1) alone cannot give adequate

information about phase dispersions near to POS. This is illustrated in Fig. 2 fox" two-

photon coherent states (TCS) that can be optimized to coxne close to POS for certain

degrees of squeezing .q at a fixed mean photon number N [12].

The following inw'.stigations are rather analogous to calculations made by Ritze [13]

in his different proposal to measure extremely small phase fluctuations. First, one has to

find a suitable reference phase in order to make the c,, in eq. (1) real. This corresponds

to < sinqb >= 0, where we suppress the phase of the LO. Second, only such input fields

can be admitted that allow a truncation of the expansion (4):

oo I oo Cn Cn + l

<< COS_9 >Q: ZCnC"+I -- -8 Z n+l

oo

I c,, c,,+ l

+ + (7)
n=O
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Fig. 2 Phase dispersions for TC, S' at a mean photon number of N = 1500 and increasing

squeezing parameter s. Note that s = 1 describes coherent light. The 62 /unction based

dispersion (699)3 starts at 1/2N, comes close to the coherent state value 1/4N and in-

creases again. The Pegg-BarT_ett dispersion (6p)2pB begins at 1/4N/or s = 1, decreases

sharply and reaches its mi_limum near to the POS level at strongly different s i_alues than
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Third, we assume a smooth c, distribution and approxilnate tile c,,+l by

c,+1 = c,, + el,, (8)

where c',, denotes tile derivative of c,, with respect to n. With eq. (8) we can determine

the second SUln in eq. (7):

where fi is the photon number operator and < ... > tile normal quantum average. Due

to the Schwarz inequality we find in addition [14,2]

2 2
c,,c.,,+, _< c,, %+, (10)

v = _'t=O _t=0

and therefore (5_)_ > c_. It turns out that POS fulfil (5_)}, B >> c_ and our truncation
assumption requires the same. Therefore c_ Call be neglected in eq. (9) and we obtain

eventually

1< 1 > 7<1><<cos_o>>q=<<cos_o>>es-_ _+1 128 (6+1) 2 " (11)

It is evident that for the determination of the averages over the number operator ex-

pressions on the right-hand side of eq. (11) we need tim knowledge of the photon num-

ber distribution. This is not surprising because very small phase fluctuations require

enhanced photon number fluctuations that affect the interference signal. During the

measurement of such phase dispersions we must consequently also monitor the photon
number fuctuations.

The situation changes remarkably, if we omit the first beam splitter in Fig. 1 and put

the signal into each chaanlel as illustrated in Fig. 3. This mM<es sense if we confine our-

selves to two- photon coherent states (TCS) because than the radius integrated Wigner

function is measured a.s was shown for coherent states by Freyberger and Schleich [6] and

generalized to TCS by Leonllardt and Paul [15]. The mea_sured disl)ersion is now

Anl 2
(5_) b = 1 - _,....,c,,c:,+, , (12)

n=O

where the subscript W points to the Wigner function and the A_, Call be expanded into
the series

(--1)" 1 (-1)" • 5

A_, = 1 + 4(n + 1) + 32(n + 1) 2 128(n nt- 1) 3 -- at'''' " (13)

Eq. (13) shows clearly the oscillations about one what amounts to the fact that eqs. (12)

and (6) give exactly corresponding results ill this order (I/N). However, for TCS's near to

POS (eq. (5)), as introduced in [12], the next order, I/N", is dominating. Here, the terln
1/32(n+ 1)2 of the A_, plays an impor_aat role. The result is that tile measured dispersion

(5_o)_ can be smaller than the corresponding PB result. Thus the measurement following

the sctmme of Fig. 3 yields for coherent states with N >> 1 the Pegg-Barnett result while

second-oi'der effects can change tile lne_ured dispersion for optimized TCS drastically

for mode, rate N(_ 50). For very large N (5_0)_, s and (5_)_, coincide for q_'CS [161.
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Fig. 3 Modified homodyn.c dctcction schcmc with two input ports whcrc two identically prepared

signals arc incidcnt. Thc k/4-platc makcs, as in Fig. I, a re/2 phasc shift in ordcr to

measure simultaneously thc sinc and the cosine of the phase diffcrcncc. The signal is hcrc

not contaminated by thc vacuum from thc unuscd port. Thus, thcrc is no physical reason
for any broadcning as in Fig. 1.

[1] J. W. Noh, A. Foug_res and L. Man(M, Phys. Rev. Lett. 67, 1426 (1991);

Phys. Rev. A 45,424 (1992) and Phys. Rev. 1 46, 2840 (1992).

[2] A. Bandilla and It. Paul, Aim. Physik 23, 323 (1969)

[3] H. Gerhardt, H. Welling and D. FrSlich, Appl. Phys. 2, 91 (1973) and H.

Gerhardt, U. Bfichler and (;. Litfin, Phys. Lett. 49 A, 199 (1974)

[4] W. Schleich, A. Bandilla and H. Paul, Phys. Rev. A 45, 6652

[5] Y. Lai and H. 1. Itaus, Quantum Opt. 1, 99 (1989)

[61 M. Freyberger and W. Schleich, Phys. Rev. 147, R 30 (1993)

[7] U. Leonhardt and H. Paul, to be published in Phys. Rev. A, 1992

[8] A. Bandilla, to be published in the Special Issue of Physica Scripta, 1993

[9] D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988) and S. M.

Barnett and D. T. Pegg, J. rood. Opt. 36, 7 (1989)

[10] G. S. Summy and D. T. Pegg, Opt. Commun. 77, 75 (1990)

[11] 1. Bandilla, H. Paul and HAt. Ritze, Quantum Opt. 3,267 (1991)

[12] A. Bandilla, Opt. Commun. 94,273 (1992)

[13] H.-H. Ritze, Opt. Commun. 92, 127 (1992)

[14] n. Paul, W. Brunner u. G. Richter, Ann. Physik 12,325 (1963)

[15] U. Leonhardt and H. Paul, to be published in Phys. Rev. Lett., 1993

[16] A. Bandilla a. H.-H. Ritze, submitted for publication

165




